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C.7 Derivatives

Problem 7.1
@)
Wi — L0S0) + 808 ()
() +g(x)?
(ii)
i (x) = 1 S x)gx) — f)g'(x) _ f()g'(x) —f(x)gx)
. ( fx) )2 g(x)? )P +e)?
g(x)
(iii)

H(x)=f((x) 8 ()’ + £ (g(x)) £/ (x)e” ™ = [ (g(x)) &' (x) + £ (8(x)) £/ (x)] /).
(

(iv) First of all h(x) =log (g(x)) +1log (sin f(x)), so

o€ SWessW) W
T T g g e
(v) We first write f(x)¢™) = exp {g(x)log f(x)}. Then
'(x) = |g'(x)log f(x g %) exp {g(x)log f(x
1) = [/ 010709+ EL | exp 0o 1 )
s oy PO
¢ to )+ L
= f()* g (x) og £ (x) + g (x) ' (x) f ()¢
(vi)
Hx) = — 1 J'(x) +2g(x)g' (x)
[log (f(x) +g(x)2)]2 f(x)+g(x)?
Problem 7.2 In both items we are asked to figure out a function g(x) such that
L, [ <1,
f(X) _ 0 |X| = 25
8

(x), 1<x<2,
(—x), —2<x<-—1,

oq

is the requested function.
(a) For f(x) to be continuous we need g(x) to be continuous and fulfill the two conditions
g(1) =1, g(2) = 0. The simplest such function is the straight line g(x) = ax + b, for which
these two conditions imply

b=1
aro=1 s a=-1, b=2.
2a+b=0,

Thus g(x) = —x+2.
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(b) Since the derivative of f for |x| < 1 and |x| > 2 is 0, now we need g(x) to satisfy also
g'(1) =g'(2) = 0. These are four equations, so the simplests function would be a polynomial
with four unknown coefficients, namely g(x) = ax® + bx> + cx +d. Thus, since g'(x) =

3ax? +2bx +c,
g(l)=1, a+btc+d=1,
g(2)=0, o JBatab+2c+d=0, L =2 b=-9,
g'(1)=0, 3a+2b+c=0, c=12, d=—4.
g'(2)=0, 12a+4b+c =0,

Hence g(x) = 2x> —9x? + 12x — 4 = (x —2)(2x%> — 5x + 2).

There is a simpler way to achieve the same result. It amounts to finding a continuous and
differentiable function with a local maximum and a local minimum. One such function is
cos? a(x — b). This function reaches a maximum at x = b, where it is 1, and a minimum at
a(x—Db) = /2, where it is 0. If we want the maximum to be at x = 1 then we must choose
b = 1. If we want the minimum to be at x = 2 we must choose a(2—1) = 7/2,i.e.,a=7/2.
Thus g(x) = cos? 5 (x—1).

Problem 7.3
Q) f(x)= —)%, therefore

Xf 4 f= —§+)—(’; =0.

(ii) f'(x) = tanx+ x(1+ tan’x), therefore
xf —f—f2 = xtanx + x> — x* tan® x — xtanx — x> tan® x = x°.

(iii) f'(x) =3cjcos3x—3c¢ysin3x and f”(x) = —9c¢; sin3x — 9¢; cos 3x, therefore
f"+9f = —9c sin3x — 9¢3 cos 3x + 9(cy sin3x+ ¢; cos3x) = 0.

(iv) f'(x) =3c1e’* —3cpe 3" and f"(x) = 9c1e>* + 9cye 3%, therefore
" =9f =9c1e™ +9cre ™ —9(c1e* 4 cre¥) = 0.

(V) f'(x) =2c1e® +5c2e>* and f"(x) = 4c1e** + 25¢,e7, therefore

" =Tf +10f = dc1e* +25¢c2e™" —T(2¢1€* + 5c2¢°%) 4+ 10(c1€* + c26™)
= (4— 144 10)e™ + (25 -35+10)e™ = 0.

. cire*—e ¥
(Vl) f,(X) = m and
v (c1e* +e ) —(cre* —e )2 _q cief—e* 2
Fi) = (cre*+e™)? 0 \eette)
therefore

N 2 N 2
" N2 ciet—e ™ ciet—e "
— :1— _— —_— :0-
=) <clex—|—e_x> * <C1ex+e—x

Problem 7.4
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1
(i) Differentiating f(x) = arctanx + arctan —,
x
Lo, 1y 1 L,
1+ x2 1 x) 1+ 2+l
1+ 2

Therefore f(x) = ¢, a constant. To find out which constant we must evaluate f(x) at any
point x > 0, say x = 1. Then f(1) = ¢ = arctanl +arctan1 =27 /4 = /2.

1
(ii) Differentiating f(x) = arctan T T —arctanux,
)= 1 l—x+1+x 1 2 1
*1 14+x\2 (1—x)? 1+x2 (1-x)2+(14x)?2 1+x2
(%)
2 1 2 1

1—2x4+x24+142x+x2 14+x2 24232 1+x2

Therefore f(x) = ¢, a constant. To find out which constant we must evaluate f(x) at any
point x < 1, say x = 0. Then f(0) = ¢ = arctan 1 +arctan0 = 7 /4.

(iii) Differentiating f(x) = 2arctanx + arcsin Txxy
2 1 2(14+x3) —2x-2x
fo =1zt e \2 ( (1+)x2)2
- (75)
2 1+x° 2(1—x?) 2 2(1—x?)
TR o e (142 142 (112) /(2R
2 2(1 —x?) 2 2

= _— :0
) 1+x2 (1+x2)(x2—1) 1+x2 1+x2 7

where in (*) we have used the fact that x > 1 implies that /(1 —x2)2 = x? — 1 > 0. Therefore
f(x) = ¢, a constant. To find out which constant we must evaluate f(x) at any point x > 1,
say x = 1. Then f(1) = ¢ =2arctan1 +arcsinl =2x/4+ /2 = .
Problem 7.5 If we calculate f/(x) =1+ %(sinx)_z/ 3 cosx we observe that this function diverges
whenever sinx = 0, i.e., for x = nt with n € Z. Those are the points where the tangent straight line
is vertical.
Problem 7.6 Let us calculate the derivative on the left, /(0~) and on the right, f'(0"). Since

f(0)=0,

W =fO) 1 1
/ — — — —
f(O )_xgr(l;l’ X _xlir(r)l’lﬁ-el/x_fgr—nwl—i-e[_l,
i 1 f(x)—f(O)_ 1 _
f(O )_xlir(l)l+ X _xli%£1+€l/x_}b%l+et_o'

So the slope of the tangent on the left is 1 —hence it forms an angle 7r/4 with the X axis— and that
on the right is 0 —hence it is parallel to the X axis. Thus the angle between both tangents is /4.
Problem 7.7 The domain of this function requires that x+2 > 0 and —1 < x+ 2 < 1 be satisfied
simultaneously. This happens for x such that 0 < x4 2 < 1, in other words, for x € [-2, —1]. Within
this domain the function is continuous because so are x+ 2, /x, and cosx —hence its inverse— in
their respective domains.
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About differentiability,

£(x) arccos(x+2) Vx+2 arccos(x+2) [ x+2
xX) = — == - ’
2v/x+2 V1= (x+2)2 2vx+2 —3—4x—x2

which diverges when x = —2 and is defined only if x> +4x+3 = (x+ 1)(x+ 3) < 0. This happens
for x € (—3,—1), an interval that overlaps with the domain excluding the point x = —1. Thus the
derivative exits only forx € (—2,—1).

Problem 7.8 Function f(x) will be differentiable if and only if otx> —x+3 > 0 for all x € R or
ox? — x+3 <0 for all x € R. The reason is that in either of these two cases the parabola does not
cross the X axis or it just touches the axis at one point (it is only if the parabola crosses the axis that
its absolute value generates points with no derivative). The condition for this to happen is that the
discriminant of the parabola be <0, i.e., 1 — 120 < 0. Thus o > 1/12.

Problem 7.9 From the definition,

£(0)  tim LD =F0)

x—0 X x—0 X x—0 2x2(e" — 1)

Now, ¢ — 1 = x+o(x) when x — 0. This means that the denominator is 2x*(e* — 1) = 2x* + o(x?)
when x — 0, and so we need to expand the numerator up to order o(x*). We need more terms of the
exponential:
2 .3
e —1 :x+%+%+0(x3).

Substituting in the numerator we have

2 X 3 2 X 3 X 3
2—x)(e"—1)—2x=2x+x —I—g—l—o(x )—x —E—l—o(x ) —2x= —g+0(x ).
Then
X 3 1
—¢ Tolx —¢to(l 1
f’(O):limﬁ—(): im6—():——.
x—0 2x3—|—0(x3) x—0 2—|—0(l) 12

Problem 7.10 Function f(x) is even, so it is enough to make sure that it is continuous and
differentiable at x = c. The function will be continuous at x = c if

1
a+bc* =~
c

On the other hand, for x > 0 the function is
a+bx’, 0<x<ec,
-, x> c,

so its derivative will be

2bx, 0<x<ec,
f/(x): 1

— xX>c
2’ )
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and therefore f(x) will be differentiable at x = ¢ if
1 1
2bc = —— & b=——.
¢ c? 2¢3

And from the previous equation we obtain
1 1 1 3

a c ¢ c 2c¢ 2¢

So for |x| < ¢ the function is defined as

ﬂ@—%@—g)

Problem 7.11
(a) The two pieces defining this function are continuous and differentiable within their respective

sets, so the only critical point is x = 1. Let us first check the continuity at this point. So

fm 9= Tim =1 tim ()= im 25 1
1m X)= lm — = 1m X)= 11m =
x—1+ x—=1T X ’ x—1- x—=1- 2 ’

hence

lim f(x) =1 = f(1),

x—1

which proves that the function is continuous also at this point. As for differentiability,

—f(1) 11 1—x
"1t = 1i f(x)—f(zl. X = lim ——— = —1
)= tim = = g = m ey =
—f(1) . | 1— 2 (1—x)(1+x)
= g SO ) R L
FOU) = lim = = im e = i ey T e
S U )
x—1- 2 ’

so f is differentiable at this point and f’(1) = —1. Summarising, f is continuous and

differentiable in R.
(b) Given that f is differentiable in R, there must exist ¢ € (0,2) such that

Q- fO)=fO2-0) & 3-3=27) & -3=F()

We do not know whether ¢ is in (0,1) orin [1,2), so we have to check both. We have

—x, x<lI,

flx) = 1
R x} 1.
X

Assuming 0 < ¢ < 1, the equation becomes

1 1
—==—C c=—.

2 2
Assuming 1 < ¢ < 2, the equation becomes

1 1
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Problem 7.12 The derivative is

2
U —
f (X) - _?)XT7

so f is not differentiable at x = 0. This is the hypothesis that is not met.
Problem 7.13
(i) Assume that a <x; <xp < -+ < x_1 < x; < b are the k points where f vanishes in [a,b].
In any of the k — 1 intervals [x;,xj41], with j =1,2,...,k—1, we can apply Rolle’s theorem
and conclude that there must be at least a point in each of them where f’ vanishes. This
means that f’ vanishes at least k — 1 times in (a,b) —hence in [a, b].

(i1) We can recursively apply the previous result and obtain

f vanishes n+ 1 times in [a,b] = f’ vanishes n times in [a, b]
f' vanishes n times in [a,b] = f” vanishes n— 1 times in [a, b]

f” vanishes n— 1 times in [a,b] = f" vanishes n— 2 times in [a, b]

=V vanishes 2 times in [a,b] = £ vanishes 1 time in [a, ).

Problem 7.14 Let us consider the function f(x) = x*/3 in the interval [26,27]. By the mean value
theorem

2
2773 2673 = = 26<c<27,

3c1/3’
SO
2/3 2
2677 =9 — ——, 26<c<27.
3c1/3
Approximating ¢ ~ 27 we obtain

2 7
262/3 z9—§ = 39 =8.777777...

The exact value is 8.776382955....
Taking now g(x) = logx in [1,3/2] we can write

1/3 1 3
From this we conclude
1 1
3 <log(3/2) < 3 < 0.3333333... <log(3/2) <0.5.

The exact vale is 0.405465108...
Problem 7.15
(i) We can obtain the limit
e —sinx—1
i €
x—0 X

by applying I’Hopital’s rule twice, as

0— 1 e +sinx 1
=lim—— = —.
x—0 2 2
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(ii)

(iii)

(iv)

)

We can obtain the limit
/— lim log | sin 7x]|
=0 log|x|

by applying I’Hopital’s rule as

. 7cosT7xsinx . Tcos7x . sinx . sinx
/= lim — = lim lim — =7lim — ,
x—0 sin7xcosx x—0 CcOSXx x—0S8In7x x—0 8In7x

and then again,

(="Tlim- =1,
x—07cos7x
Writing the limit as
1 —1
(= tim 0261
x—1+ —
logx
it becomes a oo /o0 indeterminacy, which we can sort out using 1’Hopital’s rule. Thus,
1 2 2
= —x(1 1
(= tim —T g g7, (e
=1t ———— x—1+ x—1 x—=1+ x—1
x(logx)
And we can solve this 0/0 indeterminacy by applying I’Hopital’s rule once more to obtain
21
- llm ng = O
x—1+t X
Therefore ¢ = 0.
This limit can be written as
1
¢ = lim x'/* = lim €'°%*/* = exp { lim E} .
X—$oo X—ro0 X—oo X
This new limit can be obtain by applying 1’Hopital’s rule as
1
lim — =0,
X—o0 X
therefore ¢ = 1.
The limit
1 I+x _ 1—x— 2
¢ — lim (1+x) : x—x
x—0 X
is a 0/0 indeterminacy, which can be solved by applying 1’Hopital’s rule three times. The
denominator becomes then 6. As for the numerator, (1 —x —x?)"”" = 0, so we have to take
three derivatives of g(x) = (1 +x)!** = e(1#¥)1og(1+x) Thys,
g'(x) = g(x)[log(1+x) + 1],
8" (x) = g(x) [log(1+x) +1]" + 7,
log(1+x)+1 g(x)
"(x) = g(x)[log(1 1]°+3 = .
g"(x) = g(x)[log(1+x) +1]"+3g(x) =7~ (127
Therefore

0= Liim {g(x) [log(1+x)+ 1]3 +3g(x)

6 x—0

log(l+x)+1  g(x) } 1
1+x (1+x)2) 2
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(vi) We can change the variable x to z = 1/x. Then

. 2 1 . tan2f —tant
{=Ilimx|(tan— —tan— | = lim ——.

X—ro0 X X t—0+ t

We can solve this 0/0 indeterminacy by applying 1’Hopital’s rule to obtain

2 1
(=1lim(—— —— ) =1.
50" <0082 2t cos’t >

Problem 7.16 First of all, #(0) = 0 because if #(0) = ¢ # 0, then

h(x)
xli}(l)f(x) xgl(l) x2 ’

so f would not be continuous at x = 0.

Now, since the limit above is a 0/0 indeterminacy we can try to apply I’Hdpital’s rule and
calculate

h/
lim ()

x—0 2x '

otherwise it would be Z4-co and

h
im ) _

x—0 X2 ’

As h is twice differentiable 4’'(x) — #'(0) as x — 0. For the same reason as above /'(0) = 0,

again in contradiction with the fact that f is continuous at x = 0.
Finally, once stablished that #'(0) = 0 we can rewrite

H Y, "
ot _ 1. K@) -r(0)  #"(0)
x—=0 2x 2 x—0 X 2
This limit has to be 1 if f is to be continuous at x = 0, thus 4" (0) = 2
Problem 7.17

(i) We can change the variable x to t = 1 /x to tranform the limit

X 1/t _
€zlimx[<l+l> —e]: lim (l—l—t)—e.
X—po0 X

t—0t t

Since (1+1)'/" — e ast — 0" we face a 0/0 indeterminacy. Let us apply 1’Hopital’s rule
and calculate

1 log(1+1¢ t—(1+1t)log(1+1¢
(= lim (14+1)"/ _ log(1+1) =e lim (1+1)log(1+1)
=0+ t(1+1) 12 =0+ 12(1+1)
t_
o lim (l—i-t)zlog(l—H)’
t—0+ t

another 0/0 indeterminacy that can be solved by applying I"Hopital’s rule again twice. Doing
it once we get
log(1+1¢
0=~ lig 280+0)
2 1—0+ t

and the second time we obtain

Eze 1 e

—— lim — = .
210t 141 2
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(i) Taking logarithms in the limit we can calculate it as

1
log/ = lim {leog (1 + —) —x] .
X—o0 X

Now we change the variable x to = 1 /x and write

log(1+1)—1t

log/ = lim 2 ,

t—0t

a 0/0 indeterminacy that can be solved by applying I’Hopital’s. Thus,

-l 1. 1 1 1

logl = i S = lim—— ==
R S 200 t(I+1) | 20000 141 2

Therefore £ = 1/+/e.

(iii) This is an indeterminacy 1™ which can be calculated as

1/x 1/x * 1/x 1/x
Mm(ﬁ) lm(ﬁ)

X—>00 2 X—>00 2

Now we change the variable x to = 1 /x and write

11. 2418 -2 1 T 2t—1+1_ 18" —1 1 d2t +d18’
¢c==lim —— = —( lim im =_ = =
2 1—0+ t 2 \i=0+ t =0t 2 \dt li=0 dt 1=0
1
= 5(10g2+10g18) =log V36 = log6.
Therefore ¢ = 6.
(iv) This limit generalises the previous one. Again,
1 ’ 1
= lim —Zai/x =", c=limx —Zai/x—l .
x=ee \ p = X—yo0 Pim
Now we change the variable x to = 1 /x and write
1 f — 1 & =1 1&d 1 &
c=— lim L4 p——z lim 2 _—Z—afc :—Zlogak
p t—0* t pi=j—=0t ot p = dt "li=o =

=log (alaz--'ap)l/p] .

Therefore £ = (ajay---a,)'/P.

Problem 7.18
(a) Suppose f(0) = c # 0. Then
2 3
(—rim I
x—=0  5x3

in contradiction with the hypothesis. Thus f(0) = 0.
(b) Introduce the variable t = 2x>. Thent — 0 as x — 0. Thus,

L) 2 f=f0) 2,
l=limS 7z = sim——— =3/ 0)

hence f'(0) =5/2.
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(c) Applying I’Hopital’s rule, the limit

e (fof)(2x)
£= Gy

can be obtained through the derivatives of the functions at the numerator and denominator.
But

io x:i x)) = f x)) £ (2x i*lx:;
axVoN@) = g F@0) = F @) 202, f 30 = Frmiay
and since £(0) = 0 also f~!(0) = 0. Then

2 @) (f(20)£(f13x) _ 27 O)F (f(0)£(f(0) _ 2£'(0)°

(=1

50 3 3 3
25 125
325 127

Problem 7.19 Since g(x) — f~'(1) = 0 as x — 0, this limit is a 0/0 indeterminacy. Thus we can
apply I’Hopital’s rule to calculate it as

= lim (ex—i-cosxefsmx) f (ffl(X-i- 1)) =21'(0).

x—0

All that remains is to compute f'(0). We can do that evaluating the equation defining f(x) at x = 0.
This yields,

O 0)=2 = f/(0)=2e,

since f(0) = 1. Thus ¢ = 4e.
Problem 7.20
(a) f is continuous in R because so are polynomials and the absolute value function. As for
differentiability, we can express f in a piecewise description as

) 43 —x*—1, 0<x<4,
X)) =
x*—4x3 —1, otherwise,

separating out the cases where x*(x —4) < 0 from those where x*(x —4) > 0. Both pieces
are differentiable (they are polynomials), so we must check the joints. Since

700 12X —4x°, 0<x<4,
X)) =
43 —12x*, x<Oorx >4,

we have f'(0—) = f/(07) = 0, so f is differentiable at x = 0, but f/(47) = —64, and
f(4%) =64, so f is not differentiable at x = 4.
Summarising, f is continuous in R and differentiable in R — {4}.

(b) First of all we need to look where f’(x) = 0. This means
42(B-x)=0 = x=0,x=3.

If x < 0 but close to x = 0 then f(x) = 4x*(x — 3) < 0; if x > 0 but close to x = 0 then
f'(x) = 4x*(3 —x) > 0. Therefore f has a local minimum at x = 0. On the other hand, if
x < 3 then f(x) = 4x*(3 —x) > 0 and if x > 3 then f'(x) = 4x*(3 —x) < 0, so f has a local
maximum at x = 3.
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(c)

But this is not the whole story because f is not differentiable at x = 4 —hence x = 4 cannot
be a solution to f’(x) = 0. We need to check this point separately. Now, f(4) = —1, but for
any x # 4 near x = 4 we have f(x) = [x*(x—4)| — 1 > —1, so x = 4 is a local minimum.
Finally, —1 is the smallest value that f(x) can take, and f(0) = f(4) = —1, so both, at x =0
and at x = 4, function f(x) reaches its absolute minimum. There is no absolute maximum
though, because the function grows indefinitely as x — +oo.

f(0) =—1and f(1) =2, so Bolzano’s theorem guarantees that there is at least one solution
to f(x) =0 in (0,1). On the other hand, in (0,1) we have f'(x) = 4x*(3 —x) > 0 so the
function is monotonically increasing. Therefore the solution is unique.

Problem 7.21

(a)

(b)

(©

The amount of material is proportional to the surface of the can, which is given by the formula
S = 27tr? 4+ 27rh. But cans have all the same volume V = 1tr2h, so h =V /7tr? and thefore

\%
S:27'E<r2—|——>.
r

Minimising the surface amounts to minimising the function

Vv
_ 2
Fr)=r

This is a differentiable function for all » > 0, so the minimum is reached at a solution of

1/3
f'(r):2r—L:0 = P=— = rz(l)

wr? 27 27

and

Lead is proportional to the surface. If the side of the square base is a and the height 4, then
the surface will be S = a? + 4ah. The volume constraint, 32 = a?h, implies h =32/ a?, so
128
S=d*+-— = fla).
a
Now,
128
fllay=2a—— = a=64 = a=4, h=2.
a

We can eliminate y = 20 — x, so the function to maximise is
f(x) =x*(20 —x).
Now,
f(x) = 2x(20 — x)* — 3x?(20 — x)? = x(20 — x)? (40 — 2x — 3x) = 5x(20 — x)*(8 —x) = 0.

The two solutions x = 0, x = 20 clearly minimise the function. The maximum is then x = 8
and y = 12.
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(d) If x is half the horizontal side of the rectangle, then
2
X

=bh\/1——=
y P

is half the vertical side. Then the area of the rectangle is

X2
A =4xy=4bx l——2.
a

Maximising this area is tantamount to maximising

A? , xt
f(x)—@—x —

which means solving the equation
4x3 2x?
'X)=2x—— =2x|1-=-) =0.
file) =205 =2 ( - )

One solution is x = 0 —which is obviously not the right one— and the other two solutions
are x = #a/+/2. Clearly the one that maximises the area has to be x = a/v/2.

(e) The picture illustrates how to construct the described triangle:

@ -

A}
0 j \ '\
' \

We can select an arbitrary point on the parabola, (xp,6 — x%). The slope of the tangent at
that point will be m = —2x (obtained differentiating 6 — x%), so the equation of the tangent
straight line will be

y:6—x(2)—2x0(x—x0) :6+x(2)—2x0x.

Now, this straight line meets the Y axis at A(0,6+x3), and the X axis at B((6 4+ x3)/2x0,0),
so the area of the triangle will be

(6+x)* _ 9 X
A=——"""—=—+43 — = .
4)60 X0 + %0+ 4 f(xo)
Minimising the area means solving
9 33 3(xd+4xd—12)  3(x3+6)(x3—2)
/ = —— 3 —O = 0 0 — 0 0 = 0
f o) x3 o 4 4x3 4x3

The only meaningful solution to this equation is xp = v/2.



246 Chapter C. Solutions to exercises

(f) The area of the triangle at the base is a*>/3 /4, and that of the lateral rectangles 3ah, so the
total cost will be

3 2
C—0.20><a2\/T_+O.10><3ah—0.10>< \/§<%+\/§ah>.

Since 128 = ha*+/3 /4 we get v/3ah = 512/a, so C = 0.10 x /3 f(a), where

2
a- 512
fle)=5+>
The value of @ minimising cost will be a solution of

f’(a):a—a—zo = a=512 = a=38.

(g) For a given 0 < x < 2 the corresponding y on the circunference is given by

y=1/1—(@x—1)2=/x2—x).

Thus, the three points of the triangle are A(0,0), B (x, x(2 —x)), C(x,0). The area of
the triangle will then be § = x+/x(2 —x)/2 = x*/2(2 — x)/2/2. So maximising this area is
tantamount to maximising
flx) =48 =x*(2—x) =2 —x*.
The corresponding x will be a solution of
f'(x) = 6x* —4x> = 2x*(3 — 2x) = 0.
The only meaningful solution is x =3 /2.
(h) Triangle similarity implies
)yc(;%g:x% = xoyo+ Bag = Bag +Bo = ﬁ:)%.
(i) The length of segment AB is

2
0=t o0+ 0t B = o+ @ + (s0+20) = \/<xo+a>2+§<xo+a>2

=(xo+oa)t/1+=.

So minimising ¢ is tantamount to minimising

f(a)—éz—(x0+a)2(1+2—%2>.

Differentiating

2 2 2
fla) =2(x0+ ) (1+%> —2(x0+06)2%:2(x0—|—a) (1+%§—%_2§>
2
:2<x0+a>( —%):0.

This equation has the solution

2)1/3

o = (xoy5 B= % = (X§yo)l/3.

I
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(i) The sum of segments OA and OB is

Xi
f(a):xo—l—a+yo+ﬁ:xo+yo—|—a+07y0.

Differentiating

X X
Fla)=1-"22=0 = a=(uy)"” B="20= ().

(iii) The area of the triangle is
1 1 xoy0\ Yo (xo+)*  yo (x5
A=— o == o < —) === =42 o).
2(XO+ )(yo-i-ﬁ) 2(X0+ ) Yo + o > o > OC+ X0 +

Minimising the area implies minimising

24 2

X0
o) =—=—+2x+0.
flog="5 =
Differentiating
/ x% X0Y0
f(a):—m—l—l:O = O =X, B:7:y0

Problem 7.22
(a) For a =1 the inequality becomes a trivial equality. For a > 1 take the function

fx)=(14+x)*—1—ax.
Differentiating,

ffx)=a(l+x)"'—a=0 = (1+x)*'=1 = x=0,
so x = 0 is a local extremum. From the second derivative,

') =aa=1)(1+0)"? = [(0)=a(a—1)>0

we conclude that x = 0 is a minimum —the absolute minimum if x > —1—, therefore
f(x) = f(0) =0 for every x > —1. This means

(I+x)*>14ax.
(b) Take the function
fx)=¢e"—1—nx.
Differentiating,
ffx)=e"—=1=0 = x=0,
so x = 0 1s a local extremum. From the second derivative,
=" = [f'(0)=1>0,

we conclude that x = 0 is a minimum —which is absolute in this case because there is no
other one in R. Therefore f(x) > f(0) = 0 for every x € R, i.e.,

e >14x.



248

Chapter C. Solutions to exercises

(c) Take the function

f(x) =log(1+x)— ﬁ

Differentiating,

1 1
= al =0 = x=0,

fix) = 1+x  (14x)2  (1+x)?

so x = 0 is a local extremum. From the second derivative,

pon 1 2 l-x o
f(x)= (1+x>2+(1+x)3—(1+x)3 = f'(0)=1>0,

we conclude that x = 0 is a minimum —which is absolute in this case because there is no
other one when x > —1. Therefore f(x) > f(0) = 0 for every x > —1. This proves the first
inequality. As for the second, take

g(x) =x—log(1+x)

and differentiate:

l_x_
l+x 14x

gdx)=1 x=0,

so x = 0 is a local extremum. From the second derivative,

f(x) = f1(0)=1>0,

(1+x)?

we conclude that x = 0 is a minimum —again absolute—, so f(x) > f(0) = 0 for every
x > —1. This proves the second inequality.

Problem 7.23
(a) Take the function

_ logx

f()

X

Differentiating,

1-1
= OgX:O = x=ce.

f'(x)

2
From the second derivative,

f'(e) = L <0,

e3

f”(x) _ 2logx—3

3
so x = e is the absolute maximum for x > 0. Thus f(x) < f(e) for all x > 0, x # e, which
means

1 1
ogx <

X e

(b) Multiplying the inequality by ex it becomes elogx < x, and taking exponentials

x < e,
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Problem 7.24
(i) The polynomial f(x) = x” +4x —3 ~ x’ as x — =00, 50 f(x) — o0 as x — oo and f(x) — —oo

(i)

(iii)

@iv)

)

as x — —oo. Thus f(x) = 0 at at least one point. What we need to know is to figure out
how many times f(x) bends up and down and from that determining the number of times it
crosses the X axis. Now,

f(x)=7%4+4>0
for all x € R, therefore f(x) increases monotonically. The conclusion is that there is only

one solution.

Similarly to the previous exercise, f(x) = x> —5x+6 ~ x> as x — Fo0, 50 f(x) — o0 as
x —ooand f(x) — —eo as x — —oo. Thus f(x) = 0 at at least one point. Now,

flx)y=5x*-5=0 = x=+I,
and from the second derivative
f"(x)=20x> = f"(1)=20>0, f'(—1)=-20<0,

so we conclude that x = —1 is a local minimum and x = 1 a local maximum. But /(1) =2 >0
and f(—1) =10 > 0, so the local minimum is above the X axis. In conclusion, there is only
one solution.

f(x) =x*—4x% — 1 ~x* as x — o0, 50 f(x) — o when x — oo, It is not guaranteed that
there is even a single solution. From the derivative,

flx) =4x — 124 =4x*(x—3) =0

we conclude that x = 0 and x = 3 may be extrema. f’(x) < 0 around x = 0 (at both sides), so
it is an inflection point. However, close to x = 3 we have f’(x) < 0 for x < 3 and f’(x) > 0
for x > 3, so at x = 3 the polynomial reaches its absolute minimum f(3) = —28. Since this
value is below the X axis, f(x) has to cross it twice. Therefore there are two solutions to the
equation.

The function f(x) =2x— 1 —sinx ~ 2x as x — £oo, 50 f(x) — 0 asx — oo and f(x) — —oo
as x — —oo. Thus f(x) = 0 at at least one point. Now,

f(x)=2—cosx>0 forallx€eR,

so f(x) monotonically increases. Therefore there is only one solution.

Let us first rewite the equation. Taking logarithms the equation becomes
f(x) =xlogx—1log2 =0.

f(1)=—log2 < 0and f(x) — oo as x — oo, s0 f(x) vanishes at one point at least. Now,
f(x) =logx+1,

which is f'(x) < 0 for x < 1 /e and f’(x) > 0 for x > 1/e. In other words, f’(x) > 0 in the

interval [1,e0), so f(x) monotonically increases in that interval. Therefore there is only one
solution.
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(vi) Writing the equation
f(x) =x*+logx=0

we have f(1) =1> 0, and f(x) ~ x? as x — oo, 50 f(x) — % as x — Foo. There is no
guarantee that the equation has even a single solution in that interval. From the derivative,

1 2x2+1
f) =20t~ =T
X

X

we conclude that f'(x) > 01in (1,0), so f(x) increases monotonically. Therefore the equation
has no solution in that interval.



